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Latching Ferrite Quadrupole-Field Devices

YANSHENG XU

,%tracf —In this paper a brief survey of research and development on

latching ferrite quadnrpole-field devices in China is presented. Initially,

theoretical analyses and some general roles for these kinds of devices are

given. Some practical constriction techniques and experimental results are

also presented. Finally, many practicat devices are described (e.g. recipro-

cal phase shifters with $ast switching polarizations, reciprocal phase shifters

with transverse magnetization, duplex phase shifters). In general, latching

ferrite quadrnpole-field devices have many advantages, among them sim-

plicity, ruggedness, and rapid switching.

I. INTRODUCTION

Dual-mode ferrite devices have found widespread applications
as polarizers, phase shifters, etc. In recerit years the latching
version of one of the most popular dual-mode devices—quadru-
pole-field ferrite devices—has been used in China [1], and theo-
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retical and experimental work on them has been performed.

Many new devices are constructed or are under development.

II. ~ORY

Dual-mode ferrite devices are constructed in squ~e or circular
waveguides, and are usually analyzed by the coupled wave theory
suggested by Schelkunoff more than 30 years ago [2]. First, we
calculate the tensor permeability of ferrite, magnetized in an

arbitrary direction. Generally speaking, the direction of magneti-
zation changes from point to point, and at any point in space we
use Cartesian coordinates (x, y, z) and allow the z axis to
coincide with the direction of magnetization at this point. Then,
we have

Bx = PH., – jkH,,

B,, = jkHx + pH,,

B:=pz Hz. (1]

It is necessary to point out that the coordinates x, y, z in (1)

change everywhere in space, and for simplicity we may write

(1) as

~=pfi+(pz-p)(~.~)~+jk~xfi (2)

where ~ is the unit vector along the z axis (i.e., direction of

magnetization at this point). In the calculation of dual-mode

ferrite devices, the unit vector ~ should be represented as the

superposition of unit vectors of arbitrary orthogonal coordinates

(u, u, w), used in our boundary value problem of electromagnetic

theory:

7= Yu~+ Y“~+ Ywfi

where ii, F, ti are unit vectors in the directions (u, v, w), and

Y., Y., Y~ me the projections of Y in the directions (w v, W)

respectively, and are functions of (u, v, w). From (2) we obtain

the following tensor permeability in the coordinates (u, v, w ):

[

P – jkyW “ jkyu

III-41 = jkyw P – jkyu

– jky,, jky. P 1
[1Y: -r’uY,> YLIYW

+ (p, – p) yuy,) y: YCYW ~ (3)

YUYW Y“Y., Y;

For weakly magnetized ferrites p, = p and

[

P – jkyw jky”

IIIJII = Afw P 1–jkyu . (4)

– jkyO jky~ P

Although (3) and (4) have already been obtained in other forms

by coordinate transformations in the literature [3], this equation

is very convenient and useful in calculating dual-mode ferrite

devices, as shown in the following.

From Schelkunoff [2], we may expand the electromagnetic

fields in waveguides containing transversely magnetized ferrites

as the superposition of normal modes of electromagnetic waves

in the empty waveguide (in the following, coordinate z coincides
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with the axis of our waveguide):

E,= ~ ZJL, ),L
n

Hz=~x:IJI; (5)
n

where II,, and II: are Hertzian functions of the electromagnetic

waves in the empty waveguide; el and e2 are the scale coef-

ficients; ~,, ~,*, 1,,, I:, ~, ~, and lZ, ~ are coefficients of

expansion and are functions of coordinate z only; and

V:II,, = – X;II,Z v;~; = -- xn*2~* n .

Substituting (4) and (5) into Maxwell’s equations, we have

d<,

~ =x -(Z?JI + Z..*I; + ‘Tmn~ + ‘Tmn*K*)
n

: = z -(YX + Km*K* +’ZkL +’&.1:)

n

dvn;

~ =x -( Z.*.*1: + .z.*nIn + “T.*.*K* + ‘TM*.K)

n

dI;
~ = x - (Y.,n,v + Ym*nK +’T..HJ; +’TM*nIn) (6)

e

and the coefficients Z, Y, and T can readily be obtained [see 2,
eqs. (30), (39)–(44)].

The most important terms in (6) are those which contain the
first power of k, i.e., the voltage transfer coefficients ‘T and

current transfer coefficients ‘T

‘Tn+m = ‘qm* = o. (7)

In cylindrical coordinates u = r, u = O, and from v. ~. = O (ZO is

the magnetic induction of a static magnetizing field) we have two

kinds of magnetization:

B or- Y.- cosng Bo@ - yO - sinn~ (I)

or

Bo, - y, - sin nO BOO - -yO- cosnll. (II)

And there are two sets of orthogonal modes in circular wave-

guides:

11~ - ~j~(r)cosn~ II, - ~~~’(r)sinn6’
n n

4

.1

—

I

L I J
case 3

case 4

2

m

4

)( f

1 J

case 6

case 5

Fig. 1 SIX cases of practmal constructions: l-ferrite rod, 2-magnetic yoke,

3-ferrite tube, 4-waveguide. Arrows in the waveguides show the dwections of

magnetization; arrows outside the waveguides show the directions of polari-

zation of orthogonal modes.

and

n n

From (7) it is clear that only when the magnetization takes the

form (II) are the transfer coefficients ‘T and ‘T all zero for the

above two sets of eigenmodes, and are not coupled to each other.

With square waveguides, the various modes maybe considered as

a superposition of cylindrical wave modes, and the above rule

about eigenmodes may also be applied. In Fig. 1 some practical

cases are given and the various polarizations of orthogonal eigen-

modes are indicated by arrows. In the following, some practical

constructions are presented and they are used to realize latching

ferrite devices of practical interest,

III. CONSTRUCTIONS OF PRACTICAL INTEREST

There are six kinds of construction which find applications in
practice (see Fig. 1). Of these, cases 3 and 6 are not quadrupole-
field devices; they are used to construct polarization-insensitive
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Fig. 2. Schematic diagram of latching variable power dividers or switches:

OMJ-orthogonal mode junction; LQFS-latcfrmg quadrupole-field section,

Fig. 3 Directions of polarization and principal axes of Fig. 2. A, D-direc-

tions of polarizations of input and output waves of OMJ; B, C-two principal

axes of LQFS

phase shifters, but their construction is similar to the other four
cases and hence we list them here also. Cases 1 and 2 are
constructed in circular waveguides, the only difference between
them being that in case 2 a ferrite tube instead of a ferrite rod is
used to enhance the power capacity. The wall thickness of the

ferrite tube is thinner, heat conduction is facilitated, the power

concentration is less, and hence the peak power capacity is

improved. On the other hand, the phase shift between the two

orthogonal eigenmodes in case 2 is significantly less than in case

1 since the ferrite tube is essentially magnetized azimuthally and

there are no circularly polarized components of the microwave

magnetic field near the waveguide wall. Cases 5 and 4 are

constructed in square waveguides and their magnetic yokes are

also shown there. The difference of propagation constants of two

orthogonal modes are (a and b being the dimensions of the

waveguides):

case 1: 2.1 (k/p)/a

case 2: 6.22( k/p)[~l(l.84) – .T1(l.84b/a)]/a,

(a- b)/a<<l

case 4: 2.96( k/p)/a

case 5: 4.3( k/p)/a

case 6: 1.6( k/p)/a

case 3 and 6: any polarization for two different

directions of magnetization.

IV. PRACTICAL DEVICES CONSISTING OF LATCHING

QUADRUPOLE-FIELD SECTIONS

By combining latching quadrupole-field sections with other

microwave components, many practical ferrite devices may be

constructed. Some examples of them are described in the follow-

ing.

1 ) Latching Variable Power Dividers or Switches: By combin-

ing two orthogonal mode junctions with one quadrupole-field

section, a latching variable power divider can be constructed (see

Fig. 2). In Fig. 3 the directions of polarization of the input and

output waves and the two principaf axes of the latching quadru-

pole-field section (QFS) are shown.

2) Reciprocal Phase Shifter with Fast Switching Polarizations:

The schematic diagram is shown in Fig. 4. One of the fixed

nonreciprocal polarizers (fixed A/4 section) is replaced by a

latching QFS (A/4 section or other), and the polarizations of the

output and received waves can be switched very quickly (several

microseconds).

fixecl non-reciprocal latchin~ lon~i tu - latctiin~

polarizer (A/+)
dimlly ma~netized QFS[+” or
section ‘%2)

F]g. 4 Schematic diagram of reciprocal phase slufter with fast switching

polanzatlon.

4~ rotator 1 45” rotator 2
1

(fixed) (fixed)

Fig. 5. Schematic diagram of latching reciprocal phase shifter with trans-

verse magnetization.

D A

Y4

8

c

Fig. 6. Directions of polarization in Fig. 5, For propagation from left to

right: A-polarization of input and output waves; B-polarization of output

wave of 450 rotator 1; B, D-principal axes of LQFS,

45” rotator’
rad iator LClffS Oms

from transmit t er
(fixed )

J to rece, ver

Fig, 7. Schematic diagram of duplexer-reciprocal phase shifter modules.

A
A

D

%

B

c

Flg 8. DirectIons of polarizations in Fig, 7. A-directIon of polarization of

radiator; B, D-principal axes of LQFS; B-polarization of wave to recewer;

D-polarization of wave from transmitter.

3) Latching Reciprocal Phase Sh~ter with Transverse Magneti-

zation: The schematic diagram is shown in Fig. 5 and the

direction of polarization of the input and output waves and the

principal axes of the latching QFS (LQFS) are shown in Fig. 6.

This construction has a faster switching speed than the com-

monly used dual-mode reciprocal phase shifter.

4) Duplexer-Reciprocal Phase Sh@er Modules: The schematic

diagram is shown in Fig. 7. The direction of polarization and

principal axes of the LQFS are shown in Fig. 8.

V. EXPERIMENTAL RESULTS

Experimental results have been obtained from the practical

devices that have been constructed [1], [4]–[6]. In the S-band, we

choose a/A = 0.22 and a model of case 4 in Fig. 1 is realized.

With the length of the polarizer equaf to 0.22A, we obtain

circularly polarized waves at the output port of the polarizer. The

switching time of this polarizer is approximately 20 ps. In the

C-band, latching polarizers with linearly polarized input waves

and four output polarizations (vertically and horizontally polar-

ized, left and right circularly polarized waves) are constructed

with the following performance: cross modulation <20 dB,

ellipticity <1 dB, insertion loss <0.54 dB/360°, switching time
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<8 p.s. In the C-band, a high-power variable power clivider–

combiner is realized by using the construction of case 2 in Fig. 1

with the following performance: bandwidth =10 pergent, inser-

tion loss <0.6 dB, VSWR < 1.25; switching time< 20 ps, peak

power = 500 kW, average power= 500 W, phase shift between

two orthogossionnal modes of the quadrupole-field section= 90°,

power division-combination ratio = 3 dB.

The above results show that experiments are in good agree-

ment with theory, and some practical devices have been con-

structed with many advantages over devices with electromagnets

and holding currents.
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Generalized Lorentz Gauge and Boundary Conditions

in Partially Dielectric-Loaded Cylin&ical Waveguide

JEONG-SIK CHOI, DUK-IN CHOI, AND SOON-CHUL YANG

Abstract —A generalized Lorentz gauge condition for the set of

Vlasov-Maxwell equations is introduced. The condition is applied to the

free-electron-laser instability of a relativistic eleetron beam in a partially

dielectric-loaded wavegnide. For the dielectric-loaded system with the

external wiggler magnetic field, the potential approach with the generafiied

Lorentz gauge rather tfmo the field approach is shown to bc more

convenient in the self-consistent study of free-electron-laser instability.

We afso derive the boundary conditions for pntentiafs to be satisfied at the

vacuum-dielecti, interface and show that they are equivalent to the %

and E@continuous conditions in the field approach. An example is

discussed to illustrate the equivalence between the two approaches of

potentials and fields.

I. INTRODUCTION

The instabilities of, electromagnetic waves in dielectric-loaded

cylindrical waveguide have been the subject of a number of

recent investigations. [1]-[3] These works make use of the fluid

Maxwell description and neglect the radial effect of the relativis-

tic electron beam. Using the Vlasov-Maxwell scheme, Uhm and

Davidson [4], [5] investigated the properties of free-electron-laser

instability in a relativistic electron beam, which has a finite radial

profile, propagating through a cylindrical vacuum waveguide. In

their problem of the vacuum-beam boundary conditions for the

system with the external wiggler magnetic field, the perturbed

potential rather than the field was used in tice ~elf-consistent
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calculations of current and charge densities. To formulate the

problem self-consistently, the potential approach is more

convenient and is used extensively. For the problem of partially

dielectric-loaded waveguide extending the vacuum waveguide

case, the boundary conditions of potential quantities at the

vacuum–dielectric interface are required. In this study the

boundary conditions of the scalar and vector potentials at the

vacuum–dielectric interface in a dielectric-loaded cylindrical

waveguide are presented. In our analysis, we make use of a

generalized Lorentz gauge condition for the potentials. It is

shown that the boundary conditions on potentials are equivalent

to the boundary conditions on electromagnetic fields. In ad-

dition, we discuss characteristics of the eigenmode that propaga-

tes through a partially dielectric-loaded cylindrical waveguide

using the derived new potential boundary conditions.

II. FORMULATION

We consider a partially dielectric-loaded cylindrical waveguide

with a grounded conducting wall. The permeability of the

dielectric material differs from unity by only a few parts in 105;

thus in the Maxwell equations the permeability is set as p =1.

The displacement vector D is related to E as D = (E, where c is

the dielectric constant. Cylindrical coordinates (r, 0, z) are

introduced and the dielectric constant is assumed t? be only a

function of the radial variable r.

In this analysis, a normal mode approach is adopted in which

all quantities are assumed to vary according to

V(x,l) =@(r) exp[i(18+kz– Ot)] (1)

where 1 is the azimuthal harmonic number, k is the axial

wavenumber, as is the eigenfrequency, and &(r) is the ampli-

tude. The scalar potential + and the vector potential A are

related to the fields B and E as

B=vx A (2)

1 aA
E=–v$-; z. (3)

Choosing the gauge condition

v. A+::=O (4)

as the generalization of the Lorentz gauge to the case with

dielectrics, the Maxwell equations for the potentials A., A8, A,,

and + are given as

(

lad

)

. .

–—r—–$+p2 $(r)+~~~–~~x?,(r)=O
r ar dr

(5)

(laa 12+1
—_r— ——

)

+p2 l,(r) –~18(r)–~J(r)~=0
r ar dr r’

(6)

(laa 12+1
——r———

)
+pz l@(r) +~lr(r)=O

r ar ar r’

(7)

(laa 1’

)
;~rz– —+p’ A“:(r)=O

r2

(8)
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